Distributed optimization in Machine learning

School of Electrical and Computer Engineering
University of Tehran
Erfan Darzi

Lecture 1 – Local Optimality, Optimality Conditions, and Convex Optimization

erfandarzi@ut.ac.ir

Finding a solution to an optimization problem?

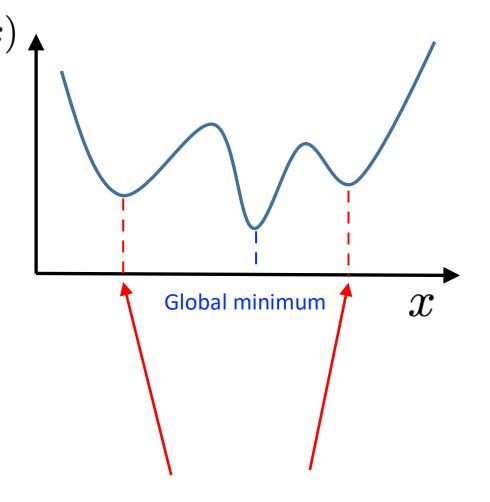
Start with unconstrained case:

$$\min_{\mathbf{x}} f(\mathbf{x})$$

s.t. $\mathbf{x} \in \mathbb{R}^n$

- Grid search?
- Requires exponential time for higher dimensions

Local minima



Unconstrained Optimization $\min f(\mathbf{x})$

s.t.
$$\mathbf{x} \in \mathbb{R}^n$$

- Global minimum $f(\mathbf{x}) \geq f(\mathbf{x}^*)$, for all $\mathbf{x} \in \mathbb{R}^n$
- Strict global minimum $f(\mathbf{x}) > f(\mathbf{x}^*), \quad \text{for all } \mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq \mathbf{x}^*$
- Local minimum $\exists \epsilon > 0$ s.t. $f(\mathbf{x}) \geq f(\mathbf{x}^*)$, for all \mathbf{x} with $\|\mathbf{x} \mathbf{x}^*\| \leq \epsilon$
- Strict local minimum

$$\exists \epsilon > 0 \text{ s.t. } f(\mathbf{x}) > f(\mathbf{x}^*), \text{ for all } \mathbf{x} \text{ with } ||\mathbf{x} - \mathbf{x}^*|| \le \epsilon$$

Examples:
$$f(x) = x^3, |x|^3, -|x|^3$$

$$\min_{\mathbf{x}} f(\mathbf{x})$$

Optimality Conditions

s.t.
$$\mathbf{x} \in \mathbb{R}^n$$

- Given a point x, how to determine if it is a (strict) local/global minimum?
- Assume twice continuous differentiability of the objective function
- Necessary optimality condition Is it sufficient?

$$\nabla f(\mathbf{x}^*) = \mathbf{0}, \quad \nabla^2 f(\mathbf{x}^*) \succeq \mathbf{0}$$

Sufficient optimality condition for local optimality Proofs?

$$\nabla f(\mathbf{x}^*) = \mathbf{0}, \quad \nabla^2 f(\mathbf{x}^*) \succ \mathbf{0}$$

• For above unconstrained optimization, $ar{\mathbf{x}}$ is stationary if $\nabla f(ar{\mathbf{x}}) = 0$. Figure

Why do we care?

- Optimality conditions are useful because
- Tractable conditions for optimality (Yes/No)
- Narrowing down the list of potential solutions

Useful in the design and the analysis of algorithms

Existence of An Optimal Solution

$$f(x) = x^2 - x^4 \quad \inf_{x \in \mathbb{R}} f(x)$$
?

- local/global minimum/maximum of $f(x) = e^{-|x|} \quad \min_{x \in \mathbb{R}} f(x)$?
- **Bolzano-Weierstrass Theorem:** Every continuous function f attains its infimum over a compact set \mathcal{X} . In other words, $\exists \ \mathbf{x}^* \in \mathcal{X} \ \mathrm{s.t.} \ f(\mathbf{x}^*) = \inf_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})$
- Consequently, if the level set $\{\mathbf{x} \in \mathbb{R}^n | f(\mathbf{x}) \le f(\mathbf{x^0})\}$ is compact, then the global min is attained
- Another sufficient condition (coercivity): $f(\mathbf{x}) o \infty$ as $\|\mathbf{x}\| o \infty$
- Coercivity + Continuity \rightarrow existence of global optimal solution(s)

Unconstrained Quadratic Optimization

$$\min_{\mathbf{x}} \quad \frac{1}{2} \mathbf{x}^T \mathbf{Q} \mathbf{x} + \mathbf{b}^T \mathbf{x}$$
 \quad \text{q is symmeteric.} \\ \mathbf{s.t.} \quad \mathbf{x} \in \mathbf{R}^n \\ \mathbf{Q} \mathbf{x} + \mathbf{b} = \mathbf{0} \) \quad \mathbf{Q} \sum \mathbf{Q} \sum \mathbf{0} \)

What if not feasible?

- Necessary conditions:
- Sufficient conditions?
- Claim:
 - The above necessary condition is also sufficient

• Any local optimum is also globally optimum (True for any convex optimization)

Convexity

< : Strictly convex A function $f:\mathbb{R}^n\mapsto\mathbb{R}$ is convex if

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \bigcirc \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}), \quad \forall \alpha \in [0, 1], \ x, y$$

- A set is convex if its indicator function is convex
- Convex function Equivalent definition

$$\min_{\mathbf{x}} \quad \widehat{f}(\mathbf{x})$$

Convex optimization problem: Convex Set

s.t.
$$\mathbf{x} \in \mathcal{X}$$

Why do we care? Local optimality (or stationarity) ==> Global optimality

Proof?

For continuously differentiable functions Not the only class though!

$$f$$
 is convex $\Leftrightarrow f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}), \ \forall \mathbf{x}, \ \mathbf{y}$

For twice continuously differentiable functions

$$f$$
 is convex $\Leftrightarrow \nabla^2 f(\mathbf{x}) \succeq \mathbf{0}, \ \forall \mathbf{x}$

Convexity

$$\min_{\mathbf{x}} f(\mathbf{x})$$
s.t. $\mathbf{x} \in \mathcal{X}$

- **Remarks:**
- Set of optimal solutions of a convex optimization problem is convex If the objective function is strictly convex, then the minimizer is unique

$$\min_{x,y} \quad \frac{1}{2}(\alpha x^2 + \beta y^2) - x$$
 • Example: S.t. $(x,y) \in \mathbb{R}^2$

- Convex/Non-convex? Local/global minimum?

$$\alpha, \beta > 0$$

$$\alpha = 0$$

$$\alpha > 0, \beta = 0$$

$$\alpha > 0, \beta < 0$$

Linear Regression and Linear Least Squares

$$\min_{\mathbf{w}} \quad \frac{1}{2} \sum_{i=1}^{n} (\mathbf{w}^T \mathbf{x}_i - y_i)^2 \qquad \qquad \min_{\mathbf{w}} \quad \frac{1}{2} ||\mathbf{X} \mathbf{w} - \mathbf{y}||^2$$
s.t. $\mathbf{w} \in \mathbb{R}^d$ s.t. $\mathbf{w} \in \mathbb{R}^d$

- Relation to quadratic optimization
- Necessary and sufficient optimality condition: $\mathbf{X}^T \mathbf{X} \mathbf{w} = \mathbf{X}^T \mathbf{y}$
- Remarks:
- Always has a solution
- Might have unbounded level sets

Linear Regression

	Area	Crime Rate	Age	RAD	PTRATIO	Bedrooms	 Price (K)	
	600	1.05	12	2.4	10.1	1	500	
	1000	2.34	10	2.5	20.1	1	 800	
	1200	1.45	3	3.1	9.7	3	 1500	$\hat{\ }y_1$
L	1500	1.56	30	1.7	7.2	2	 1200	
					•••		 	
	2700	1.01	20	0.9	4.3	4	5000	
								<u> </u>
2	$\mathbf{x}_i \in$	\mathbb{R}^d						\overline{y}_n

Model: Linear predictor

Loss: L2 difference

$$\min_{\mathbf{w}} \quad \frac{1}{2} \sum_{i=1}^{n} (\mathbf{w}^T \mathbf{x}_i - y_i)^2$$

s.t. $\mathbf{w} \in \mathbb{R}^d$

What if we want a more interpretable predictor?

Linear Regression

$$\min_{\mathbf{w}} \quad \frac{1}{2} \sum_{i=1}^{n} (\mathbf{w}^T \mathbf{x}_i - y_i)^2 \quad \text{Imposing sparsity} \quad \min_{\mathbf{w}} \quad \frac{1}{2} \sum_{i=1}^{n} (\mathbf{w}^T \mathbf{x}_i - y_i)^2 + \lambda \|\mathbf{w}\|_0$$
s.t. $\mathbf{w} \in \mathbb{R}^d$

$$\min_{\mathbf{w}} \quad \frac{1}{2} \sum_{i=1}^n (\mathbf{w}^T \mathbf{x}_i - y_i)^2 + \lambda \|\mathbf{w}\|_1$$
 Suggestion Tibshirani, Donoho, ...

s.t. $\mathbf{w} \in \mathbb{R}^d$

Convex and can be solved efficiently!

Non-convex and even not continuous

